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ABSTRACT

A self-consistent set of equations for the azimuthal variation of rms betatron
oscillation amplitudes, including the effects of dispersion and space charge, is derived.
These effective envelope equations can be integrated over the beam energy distribution
to provide space charge forces in a particle core model for rings.  The derivation of the
envelope equations involves an accelerator ordering scheme for the beam dynamics and
a statistical moments analysis of the canonical distribution function in the six-
dimensional phase space of the beam Hamiltonian.  The azimuthal variation of the
second moments of the transverse canonical coordinates, x β  and z β , integrated over
the kinetic distribution function of the beam, provides the rms equations.  These
equations, at fixed beam energy, are integrated over the beam energy distribution to
provide the overall space charge distribution and force.  Because the envelope
equations and dispersion function both depend upon and determine the space charge
forces, the consistency of the core model requires either analytic closure assumptions or
numerical iteration.

INTRODUCTION

The analysis and understanding of space charge effects for particle beams in linear
accelerators has been greatly facilitated by the use of particle core models (1).  Particle
core models represent the dynamics of the beam by envelope equations that contain the
effects of the lattice focusing forces, the beam emittances, and the space charge.  In
addition to providing a collective model for beam dynamics, the envelope equations are
also used to calculate space charge forces in particle tracking.  Particle core models are
employed in conjunction with particle-tracking calculations to simultaneously study
both collective and individual particle dynamics.

The alternatives to particle core models for the computational study of space charge
effects are the Particle in Cell (PIC) models (2).  In comparison with PIC models,
particle core models have both advantages and disadvantages.  One advantage of
particle core models involves computing time.  The computational work involved in
advancing the envelope equations is comparable to that in tracking a single particle, and
the evaluation of the resulting space charge forces is fast.  Another advantage of
particle core models is their simplicity, making them amenable to analytic calculations.
A third advantage is that individual particle orbits can be studied one at a time using
space charge fields given by the particle core model.   However, a major limitation of
the particle core model is that it provides a simplified representation of the space
charge distribution, both in the envelope equations and in the particle-tracking
equations.  Even so, particle core models provide a practical middle ground between
analytic theory and large PIC code calculations.



Up until now, particle core models have been applied primarily to the study of beam
dynamics and halo generation in straight channels with strong space charge forces.
Now, with the advent of a number of applications involving rings with high beam
intensities and small beam loss requirements (3),  the application of particle core
models to rings is necessary.  However, the representation of the beam via the envelope
equations must be generalized to include the effects of dispersion.  One treatment of
this dispersion problem has recently been carried out at University of Maryland (4), and
we present a somewhat different approach here.

The purpose of this paper is to extend the particle core model to rings by including
dispersion.  The approach involves a moments analysis of the betatron oscillations
averaged over the distribution function in the canonical phase space of a beam
Hamiltonian which is derived using an ordering scheme that separates the betatron
motion from the longitudinal motion and the dispersion.  Effective envelope equations
are derived for the azimuthal variation of the rms values of the canonical transverse
phase space coordinates, with the statistical averaging at each energy over the beam
distribution function in phase space.  These envelope equations are independent of
dispersion and valid, in principle, for arbitrary space charge distributions.  The effects
of dispersion are incorporated in a straightforward fashion by integrating the envelope
equations over beam energy to obtain the overall space charge distribution.  For self-
consistency, this space charge distribution must be the same as that appearing in the
dispersion and envelope equations.  In subsequent sections we present the accelerator
ordering scheme and the beam Hamiltonian derivation; the behavior of the distribution
function and integrated quantities under the accelerator ordering scheme; the derivation
of the rms envelope equations; and the incorporation of dispersion to obtain the overall
charge distribution.

THE BEAM HAMILTONIAN

This section presents a derivation of the beam Hamiltonian in a form that decouples
the transverse betatron motion from the longitudinal motion and from explicit
dependence on the dispersion.  Although a derivation was recently published by one of
the authors (5), the present version uses an accelerator ordering scheme, which is later
applied to derive the envelope equations.  The main purposes of presenting this section
here are 1) to introduce the ordering scheme, and 2) to obtain the canonical variables of
the phase space used later in deriving envelope equations.

Begin with the standard Hamiltonian for a charged particle in an electromagnetic
field:
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where E mc0
2≡ γ  is the reference energy of the beam; ∆E is the energy deviation; the

canonical coordinates and momenta are ( , , , , , )x p z p s px z s ; and the time, t , is the
independent parameter.  In order to make the azimuthal coordinate, s , the independent
parameter, it is customary (6) to define a new Hamiltonian by H ps1 = − .  First,

separate the vector potential A
→

 into contributions Aext
→

 from the lattice and A sc
→

from
the beam space charge.  We assume the lattice contributions to the magnetic fields are
transverse to the azimuthal direction, so that the external vector potential can be
chosen to satisfy A Ax

ext
z
ext= = 0 .  Define a reference momentum that satisfies the
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The canonical variables are now ( , , , , , )x p z p t Ex z −∆ .  To adapt Eq. (2) to the
analysis of space charge in rings, we adopt the following accelerator ordering scheme:
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The application of this ordering to Eq. (2) yields, valid through O( )ε 2 :
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The external vector potential is next expressed in terms of the magnet fields and the
space charge vector potential in terms of the electrostatic potential.  We will not
consider accelerating channels here, but rather confine our attention to nonaccelerated
beams, so that As

ext  is independent of time.  An expression for the external potential,



valid through second order, for bending and quadrupole magnets is
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, where B0  is the bending field on the

reference orbit.  The vector potential due to the beam is related to the electrostatic
potential by As

sc = βΦ .  Together with these substitutions, we make the following
canonical scaling transformation:
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Equation (5) contains the term −
x
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ρ
δ , which couples the betatron motion to the

dispersion.  The definitive step in Ref. (5) removes this term through the following
canonical transformation of the second type:

F x p z p t s x D p t z p D x D Dx z x x z x x x2
21

2
(
~

, ,
~

, ,
~

, , ) (
~

)
~ ~ ~

β β β βδ δ δ δ δ− = − − + + ′ − ′ ,       (6)



where D D sx x= ( )  is a function of s  that is yet to be defined.  The quantities Dx
′  and

Dx
″  are the first and second derivatives of Dx  with respect to s .  With this

transformation the new coordinates and momenta are
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and the new Hamiltonian is
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Clearly, from Eqs. (7) and (8), Dx  is closely related to the dispersion function, and the

new transverse coordinates and momenta, x p y px y
β β β β, , , , are pure betatron

oscillations about the closed orbit at the specific corresponding energy.  Although δ  is
the relative momentum deviation, we will use the terms momentum and energy
interchangeably in referring to δ  here.

To complete the separation of the Hamiltonian, we consider the dependence of the
space charge term on Dx .  To do this, we expand Φ( , , )x D z sx

β βδ+  about the
reference orbit:
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We assume that the beam is centered at the origin, so that Φ Φ01 10 0= = , and is
sufficiently symmetric that Φ11 0= .  This is certainly true for most commonly used
analytic beam distributions.  Then, setting the constant term Φ 00 0= , Eq. (9) can be
written as
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where the term ∆Φ = O( )ε 3 .  Substituting this into Eq. (8) yields
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We now choose Dx  to be the dispersion function with lowest order space charge
correction, meaning that Dx  satisfies the equation
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With this choice of dispersion function, the Hamiltonian finally simplifies to
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The canonical coordinates and momenta are ( , , , , , )x p z px z
β β β β τ δ− .  The motion for

the Hamiltonian in Eq. (13) is completely separated into independent contributions for
betatron oscillations, ( , )x px

β β  and ( , )z pz
β β , and longitudinal dynamics, ( , )δ τ .  The

betatron terms are independent of dispersion and of the momentum shift, δ ; while the
coordinate, τ , is cyclic, so that δ  is constant.  The space charge terms provide tune
shifts in the betatron oscillations (first two lines) and modify the dispersion function
(Eq. (12)) appearing in the third line.  In lowest order all space charge terms are
expressed with coefficients obtained from expanding the potential about the reference
orbit.  The remaining effects of space charge are third order and higher, and will be
neglected in determining the rms envelope equations.  In terms of the present notation,
the ordering scheme is
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DISTRIBUTION FUNCTION AND AVERAGING

Let f x p z p sx z( , , , , , , )β β β β τ δ−  be the distribution function of the beam in the phase
space of canonical coordinates.  Define the phase space volume elements
dV dx dp dz dp d dx z= −β β β β τ δ( )  and dV dx dp dz dpx z⊥ = β β β β .  We take the normalization
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β β β β τ δ( )− = =∫ ∫ , where N  is the number

of particles in the beam.  The distribution function f  satisfies a kinetic equation of the
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where the source term S  accounts for non-Hamiltonian processes, such as gains due to
injection and losses due to collisions with the foil or with other beam particles.  We
extend the adopted ordering scheme by assuming that the distribution function is O( )1
and that the non-Hamiltonian sources and sinks are O( )ε :

O( )1  - f
O( )ε  - S .



Then, to lowest order the distribution function obeys the Vlasov Equation in canonical
phase space.

Useful averages and moments are calculated by integrating the product of the
quantity to be averaged times the distribution function over phase space at fixed values
of azimuth, s , time, t , and momentum, δ .  According to Eqs. (4) and (7),

τ β β β= + − ′ct D p D xx x x .  Hence, to average at fixed time, multiply the function to be

averaged by the Dirac delta function, δ τ β β β( )− − + ′ct D p D xx x x .  Similarly, to
average at fixed momentum, δ 0 , multiply by δ δ δ( )− 0 .  Using this prescription, we
define the following quantities:
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In Eq. (15), λ δ( , , )s t 0  is the azimuthal particle density per unit momentum at δ 0 ,
λ tot s t( , )  is the overall azimuthal particle density, and P( )δ  is the momentum

probability distribution: note that P d( ) ( )δ δ∫ − = 1.  Furthermore, the averages of any

function, g x p z p sx z( , , , , , , )β β β β τ δ− , are given by:
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In order to derive rms envelope equations, it is necessary to differentiate averaged
quantities in the azimuthal direction.  Because these are dynamic equations, the
derivatives in s  are accompanied by changes in time.  From Eqs. (4), (5), (7), and (13)
it is seen that



β
∂

∂ δ
δ

ρ γ ρ

τ
∂

∂ δ
δ

ρ γ

β

ct
H D x

H D

x

x

′ =
−

= + − +

′ =
−

= + −

2
2

2

1
1

1
1

(
~

)
( )

( )
( ).

                                     (17)

In the s  differentiation of quantities averaged over transverse phase space, it is
appropriate to evaluate βct ′  on the closed orbit, x β = 0 .  In moving from s  to
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and differentiation inside the integral and application of the chain rule yields
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By choosing g = 1 we obtain the result that 
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Before proceeding with the derivation of rms envelope equations, consider two
functions g x p z p sx z( , , , , , , )β β β β τ δ−  and h x p z p sx z( , , , , , , )β β β β τ δ− .  Defining variations

∆g g g= −  and ∆h h h= − , we find that

∆ ∆g h gh g h= − .                                               (21)

Setting h g=  leads to the standard deviation of g

σ g g g g2 2 2 2= = −( )∆ .                                            (22)

Equations (20), (21), and (22) will be used extensively in obtaining the rms envelope
equations.

THE RMS ENVELOPE EQUATIONS

Let q x= β  or q z= β  be one of the transverse canonical coordinates and let p q= ′
be the momentum canonical to q .  Then, according to Eq. (21), to lowest order in ε
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where ′ = −p
H

q

∂
∂

.

Let us now define an effective emittance in terms of the rms statistical emittance by

ε η σ σεq p q p q= −{ }2 2 2
1

2∆ ∆ ,                                       (24)

where the factor η ε  is a constant normalization factor.  For a K-V distribution the

factor η ε = 4  makes the effective emittance equal to the area of the maximal ( , )q p

phase space ellipse.  Using Eqs. (23) and (24), it is straightforward to show that

 
d

ds
q p

H

q
q

H

q
p qq( ) { ( ) }

ε

η
∂
∂

∂
∂ε

2 22= − −∆ ∆ ∆ ∆ ∆ ∆ ∆ .                      (25)



If the dependence of 
∂
∂
H

q
 on q  is linear, i.e. 
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qq= Κ , then Eq. (25) shows that the

effective emittance is constant.  For the Hamiltonian of Eq. (13), 
∂
∂

ε
H

q
q Oq= +Κ ( )2

for both x  and z , so the effective emittance is constant to leading order.
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can be combined with the definition, Eq. (25), of the effective emittance to obtain,

using the identity ( )
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Equation (26) shows that the normalization constant η ε  provides a scale factor relating

the rms value of ∆q  to an envelope radius η σe q
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2 .

Using the adopted beam Hamiltonian, we obtain
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where a e x= η σ
1

2  and b e z= η σ
1

2 .  Equation (27) presents the rms envelope equations,
correct to lowest order in ε , for betatron oscillations at momentum δ .  These
equations are independent of dispersion and momentum.  For a monoenergetic beam,
no momentum spread, and an elliptical K-V distribution of radii a  and b , the potential

is given by Φ K V
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where K
q

E
tot=

2 2

2 2
0

λ
γ β

 is the generalized perveance (7).

THE SPACE CHARGE DISTRIBUTION

The rms envelope equations derived above provide only part of the formulation of a
particle core model for rings.  It remains to obtain the space charge forces to close the
model.  This can be done by superposing the particle distributions at each energy,
which can be inferred from the envelope equations, over the momentum distribution,
while taking into account the effects of dispersion in spreading the beam.  To do this it
is necessary to make some assumptions about the particle distribution function.  This is
a standard problem when dealing with moments expansions, and we state below where
this is required.

For a given momentum, δ , the overall displacement relative to the center of the
reference beam is seen from Eq. (7) to be
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The total particle density at each value of x
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 is given by the distribution function
as follows
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Equation (30) requires detailed knowledge of the distribution function, but it is of
interest to extend the moments approach of the previous sections to obtain rms values
of the overall charge distribution.

We now calculate the overall average and rms values of x
~

 and z
~

:
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If the particle distribution at each energy is centered about the closed orbit, then
x z x z

tot tot
= = = = 0 ; and if the reference orbit is centered in the momentum

distribution, then δ
tot

= 0.  In this case, x z
tot tot

~ ~
= = 0 .  To evaluate the total

rms size of the beam, we calculate
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If x z
tot tot

= = 0 , if the betatron oscillation coordinates are uncorrelated with δ , so

that x
tot

δ = 0 , and if δ
tot

= 0, then the effective emittances are independent of

momentum, and Eq. (32) simplifies to
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Consequently the rms standard deviations of the overall displacement contain separate

contributions from betatron oscillations and from dispersion in the case of x
~

 and from

betatron oscillations only in the case of z
~

.
The above results can be used to construct simple overall particle distributions for

the purpose of calculating the space charge fields for particle core model dynamics and
particle tracking.  The use of Eq. (30) to define the particle density requires detailed
information about the distribution function.  A simpler computational approach
involves assuming some standard form for the distribution function in transverse phase
space.  Then the envelope equations can be solved to provide the rms radii of the
assumed distribution, and hence its contribution to the space charge density, at each
energy.  Discretizing momentum space into a number of bins, each of size ∆δ , and
assuming a fraction of the beam, P( )δ δ∆ , to be inside each bin, the associated charge
distributions can be added in a weighted sum with weights proportional to P( )δ δ∆ .
The total space charge field is thus obtained by superposition of the fields given by the
transverse distribution parameterized by the envelope solutions.  For self-consistency,
the total space charge potential obtained in this manner, expanded about the reference
closed orbit, must yield the coefficients used in Eqs. (10) and (13).  To enforce this,
iteration of the process may be required.

Even more simply, the overall rms beam parameters in Eq. (33) can be associated
with an assumed transverse distribution, and the summation over beam momentum
bypassed.  For example, for an elliptical K-V distribution with semi-axes

( )

A

a D

x

x tot

=

= +

2

42 2 2
1

2

σ

δ

~

)

B

b
z

=

=

2σ ~

,
                             (34)

the space charge potential is
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so that Φ20 4
= −

+
q

A A B
totλ

( )
 and Φ02 4

= −
+

q

B A B
totλ

( )
.  With this approximation, the

envelope equations must be solved in the form of Eq. (27), rather than Eq. (28).  Also,
through the space charge terms, the radii A  and B  appear in Eq. (12) for the
dispersion, Dx .  An iterative approach to solving for Dx  for a matched beam prior to
the dynamic calculations can be developed starting with the usual dispersion function
without space charge.  The approach requires solving Eqs. (27), (34), and (35)



simultaneously for matched core boundary conditions, using the available dispersion
function.  With an explicit symplectic integration scheme of independent kicks and
linear transport steps, all information would be available when required.  After solving
for the matched envelope, the resulting space charge potential could be used to solve
for the space-charge-corrected closed orbit dispersion function in Eq. (12).  This would
complete one iteration, and the approach could be repeated to convergence.  The
converged space-charge-corrected dispersion function for a matched beam would then
be used as the dispersion function for the dynamic calculations.  This simple scheme
provides a self-consistent particle core model using a space-charge-corrected dispersion
function, a pair of rms envelope equations, and K-V beam distribution.

CONCLUSIONS

A self-consistent particle core model for transverse beam dynamics in rings,
including the effects of space charge and dispersion, was derived using a moments
approach.  The model includes rms envelope equations for betatron oscillations, a
space-charge-corrected dispersion function, and a prescription for the evaluation of the
space charge potential, all coupled together self-consistently.  In addition to describing
the collective dynamics of the beam, this model can provide space charge forces for
particle tracking calculations.  The derivation was carried out using an accelerator
ordering scheme and a statistical moments analysis based on the canonical distribution
function in the six-dimensional phase space of the beam Hamiltonian.  The azimuthal
variation of the second moments of the transverse canonical (betatron oscillation)
coordinates, x β  and z β , averaged at fixed beam energy over the kinetic distribution
function of the beam, leads to the rms envelope equations.  These envelope equations
are found to be independent of dispersion.  A subsequent integration over beam

energies provides the rms values of the overall displacements, x
~

 and z
~

, and the spatial
beam distribution and space charge force.  This integration can be carried out with
varying degrees of complexity to obtain particular models of the charge distribution.
Self-consistency must be assured by using the resulting space charge force to calculate
the dispersion and envelope equations until the system is converged, thus closing the
loop.
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